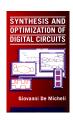
Scheduling

Giovanni De Micheli Integrated Systems Laboratory

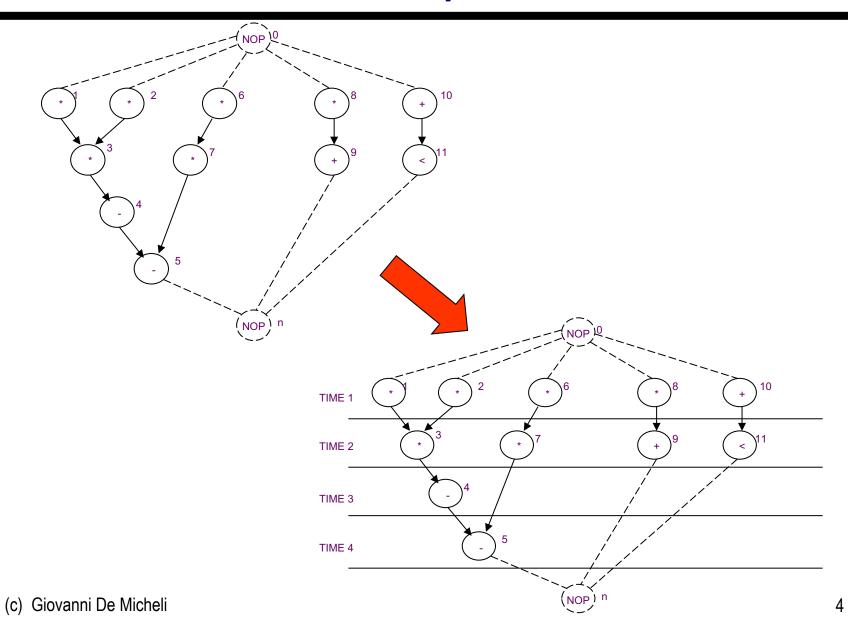


Module 1

- Objectives:
 - **▲** The scheduling problem
 - **▼** Case analysis
 - **▲** Scheduling without constraints
 - **▲** Scheduling with timing constraints

Scheduling

- Circuit model:
 - ▲ Sequencing graph
 - ▲ Cycle-time is fixed
 - **▲** Operation delays expressed in cycles
- Scheduling:
 - **▲** Determine the start times for the operations
 - ▲ Satisfying all the sequencing (timing and resource) constraint
- ◆ Goal:
 - ▲ Determine *area/latency* trade-off



Taxonomy

- Unconstrained scheduling
- Scheduling with timing constraints:
 - ▲ Latency
 - **▲** Detailed timing constraints
- Scheduling with resource constraints
 - Most common problem
 - **▲** Computationally intractable

Simplest method

- All operations have bounded delays
- **◆** All delays are in cycles:
 - **▲** Cycle-time is given
- ◆ No constraints no bounds on area
- ◆ Goal:
 - **▲ Minimize latency**

Minimum-latency unconstrained scheduling problem

- ◆Given a set of ops V with integer delays D and a partial order on the operations E:
- ♦ Find an integer labeling of the operations $φ : V → Z^+$ such that:

```
t_i = \varphi(v_i),

t_i \ge t_j + d_j \quad \forall i, j \text{ s.t. } (v_j, v_i) \in E

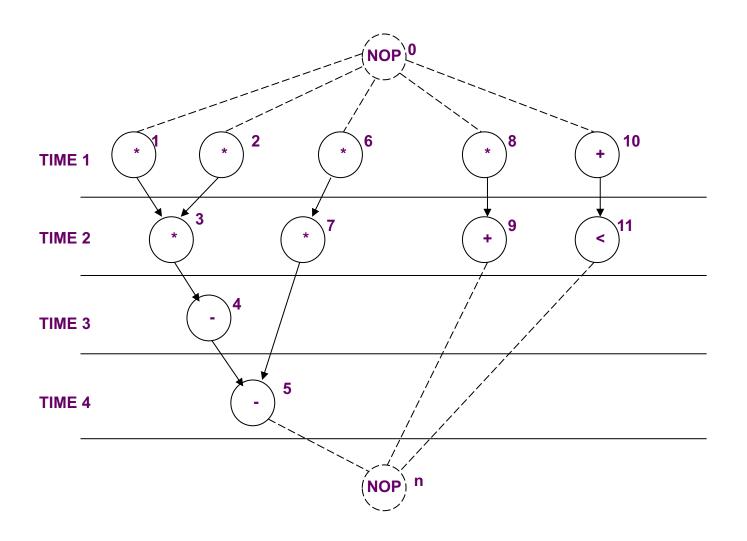
and t_n is minimum
```

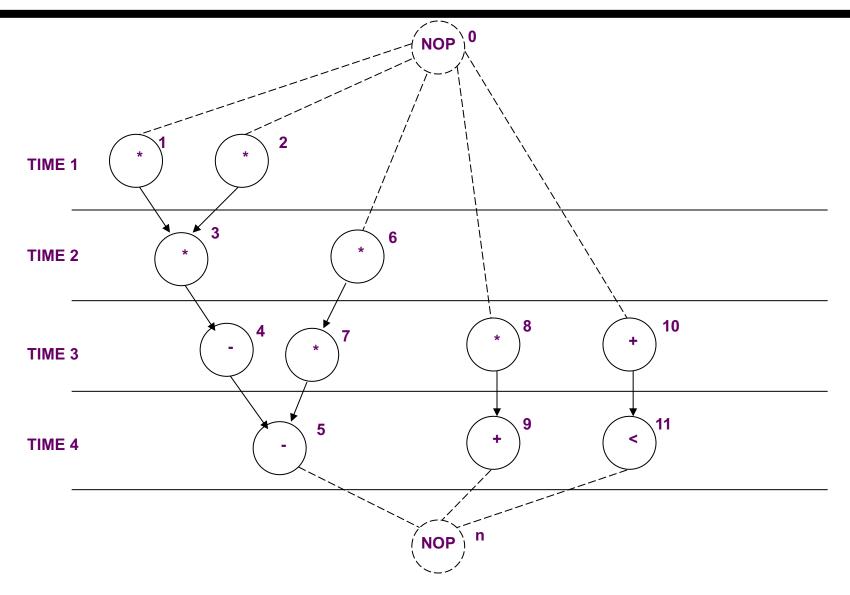
ASAP scheduling algorithm

```
ASAP (G_s(V,E)) {
          Schedule v_0 by setting t_0 = 1;
          repeat {
                    Select a vertex v<sub>i</sub> whose predecessors are all scheduled;
                    Schedule v_i by setting t_i = \max t_j + d_j;
                                                  j:(v_i,v_i) \in E
          until (v_n is scheduled);
          return (t);
```

ALAP scheduling algorithm

```
ALAP (G_s(V,E), \overline{\lambda}) {
           Schedule v_n by setting t_n = \lambda + 1;
           repeat {
                      Select a vertex v<sub>i</sub> whose successors are all scheduled;
                      Schedule v_i by setting t_i = \min t_i - d_i;
                                                       j:(v_i,v_i) \in E
           until (v_0 is scheduled);
           return (t);
```

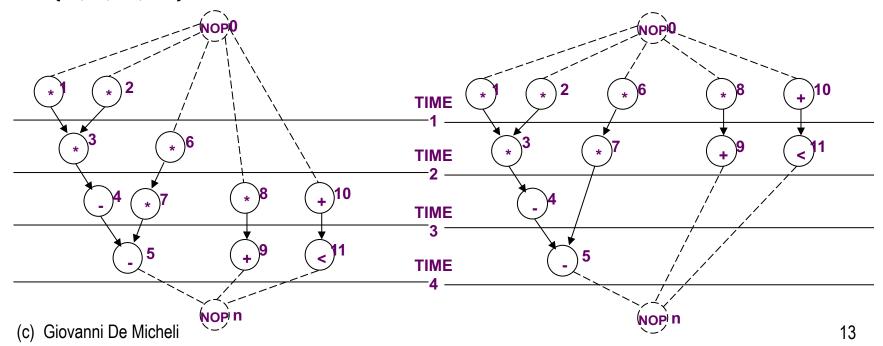




Remarks

- ALAP solves a latency-constrained problem
- Latency bound can be set to latency computed by ASAP algorithm
- Mobility:
 - **▲** Defined for each operation
 - ▲ Difference between ALAP and ASAP schedule
- Slack on the start time

- Operations with zero mobility:
 - ▲ { **v**₁, **v**₂, **v**₃, **v**₄, **v**₅ }
 - ▲ Critical path
- Operations with mobility one:
 - ▲ { **v**₆, **v**₇ }
- Operations with mobility two:
 - ▲ { **v**₈, **v**₉, **v**₁₀, **v**₁₁ }

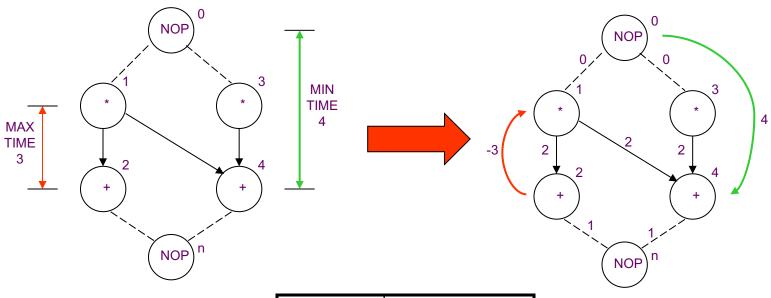


Scheduling under detailed timing constraints

- Motivation:
 - ▲ Interface design
 - **▲** Control over operation start time
- Constraints:
 - ▲ Upper/lower bounds on start-time difference of any operation pair
- Feasibility of a solution

Constraint graph model

- Start from sequencing graph
 - ▲ Model delays as weights on edges
- Add forward edges for *minimum* constraints:
 - ▲ Edge (v_i , v_j) with weight $I_{ij} \rightarrow t_i \ge t_i + I_{ij}$
- Add backward edges for maximum constraints:
 - ▲ That is, for constraint from v_i to v_j add backward edge (v_j, v_i) with weight: $-u_{ij}$
 - **▼** because $t_i \le t_i + u_{ij} \longrightarrow t_i \ge t_i u_{ij}$



Vertex	Start time
V ₀	1
v ₁	1
V ₂	3
v ₃	1
V ₄	5
V _n	6

Methods for scheduling under detailed timing constraints

- Assumption:
 - ▲ All delays are fixed and known
- **◆** Set of linear inequalities
- Longest path problem
- **◆** Algorithms:
 - ▲ Bellman-Ford, Liao-Wong

Module 2

- Objectives:
 - **▲** Scheduling with resource constraints
 - ▲ Exact formulation:
 - **▼ ILP**
 - **▼** Hu's algorithm
 - **▲** Heuristic methods
 - **▼** List scheduling
 - **▼** Force-directed scheduling

Scheduling under resource constraints

- Classical scheduling problem:
 - ▲ Fix area bound minimize latency
- The amount of available resources affects the achievable latency
- Dual problem:
 - ▲ Fix latency bound minimize resources
- Assumption:
 - ▲ All delays bounded and known

Minimum latency resource-constrained scheduling problem

◆ Given a set of ops V with integer delays D, a partial order on the operations E, and upper bounds { a_k; k = 1, 2,..., n_{res} } on resource usage:

♦ Find an integer labeling of the operation $φ : V → z^+$ such that :

```
t_i = \varphi(v_i),

t_i \ge t_j + d_j for all i,j s.t. (v_j, v_i) \in E,

|\{v_i | T(v_i) = k \text{ and } t_i \le l < t_i + d_i\}| \le a_k for all types k = 1, 2, ..., n_{res}

and steps l
```

and t_n is minimum

Scheduling under resource constraints

- Intractable problem
- **◆** Algorithms:
 - ▲ Exact:
 - **▼ Integer linear program**
 - **▼** Hu (restrictive assumptions)
 - ▲ Approximate :
 - **▼** List scheduling
 - **▼** Force-directed scheduling

ILP formulation

Binary decision variables:

$$X = \{ x_{ii}, i = 1, 2, ..., n; i = 1, 2, ..., \overline{\lambda} + 1 \}$$

 x_{ii} is TRUE only when operation v_i starts in step l of the schedule (i.e. $l = t_i$)

 $\overline{\lambda}$ is an upper bound on latency

◆ Start time of operation v_i : $\sum_i I \cdot x_{ii}$

ILP formulation constraints

Operations start only once

$$\sum x_{ii} = 1$$
 $i = 1, 2, ..., n$

Sequencing relations must be satisfied

$$t_i \ge t_j + d_j$$
 $\rightarrow t_i - t_j - d_j \ge 0$ for all $(v_j, v_i) \in E$
 $\sum I \cdot x_{il} - \sum I \cdot x_{jl} - d_j \ge 0$ for all $(v_j, v_i) \in E$

Resource bounds must be satisfied
 Simple case (unit delay)

$$\sum_{i:T(v_i)=k} x_{il} \le a_k \quad k = 1,2,...n_{res}; \text{ for all } l$$

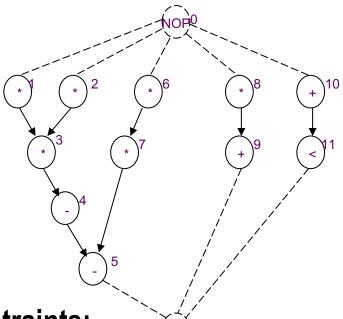
ILP Formulation

min ||t|| such that

$$\sum_{j} x_{ij} = 1$$
 $i = 1, 2, ..., n$

$$\sum_{i} I \cdot x_{ii} - \sum_{j} I \cdot x_{ji} - d_{j} \ge 0$$
 $i, j = 1, 2, ..., n, (v_{j}, v_{i}) \in E$

$$\sum_{i:T(v_i)=k}^{l} \sum_{m=l-d_i+1}^{l} x_{im} \leq a_k \quad k=1, 2, ..., n_{res}; l=0, 1, ..., t_n$$



NOP n

Resource constraints:

- ▲ 2 ALUs; 2 Multipliers
- \triangle a₁ = 2; a₂ = 2
- ♦ Latency bound $\overline{\lambda} = 4$
- Single-cycle operation
 - \triangle d_i = 1 for all I

Operations start only once

$$x_{11} = 1$$

 $x_{61} + x_{62} = 1$

...

Sequencing relations must be satisfied

$$x_{61} + 2x_{62} - 2x_{72} - 3x_{73} + 1 \le 0$$

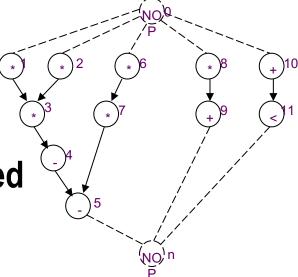
$$2x_{92} + 3x_{93} + 4x_{94} - 5x_{N5} + 1 \le 0$$

...

Resource bounds must be satisfied

$$x_{11} + x_{21} + x_{61} + x_{81} \le 2$$

 $x_{32} + x_{62} + x_{72} + x_{82} \le 2$



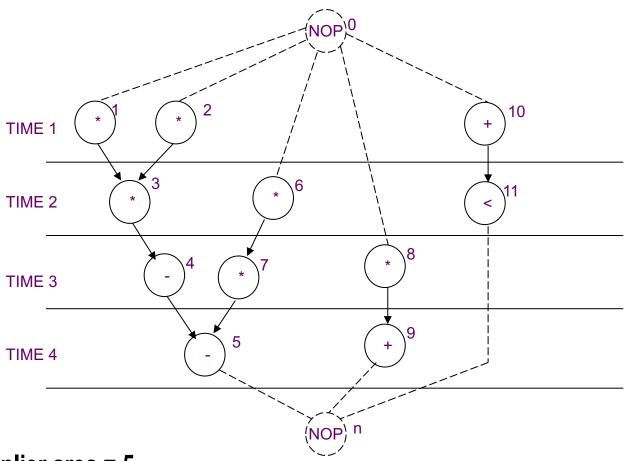


Dual ILP formulation

- Minimize resource usage under latency constraint
- Additional constraint:
 - ▲ Latency bound must be satisfied

$$\Delta \Sigma / I x_{nl} \leq \lambda + 1$$

- Resource usage is unknown in the constraints
- ◆ Resource usage is the objective to minimize



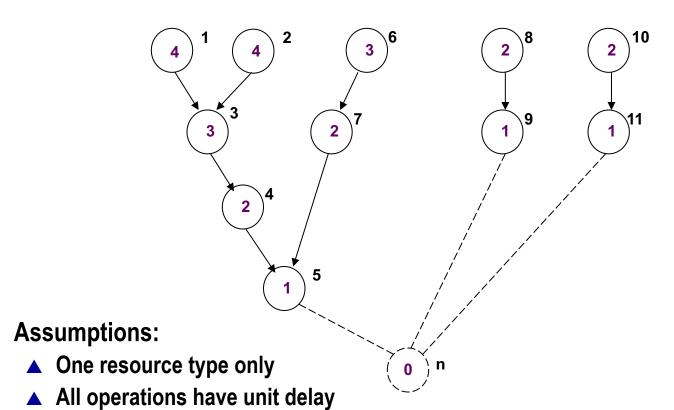
- **◆** Multiplier area = 5
- **◆** ALU area = 1.
- **◆** Objective function: 5a₁ + a₂

ILP Solution

- Use standard ILP packages
- ◆ Transform into LP problem
- Advantages:
 - ▲ Exact method
 - ▲ Others constraints can be incorporated
- **◆** Disadvantages:
 - ▲ Works well up to few thousand variables

Hu's algorithm

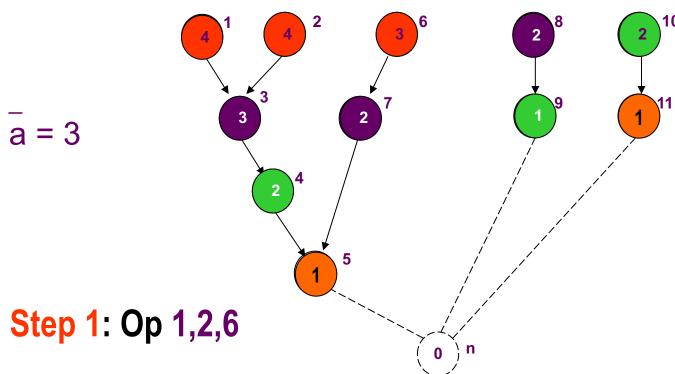
- **◆** Assumptions:
 - ▲ Graph is a forest
 - ▲ All operations have unit delay
 - ▲ All operations have the same type
- **◆** Algorithm:
 - ▲ Greedy strategy
 - ▲ Exact solution



- **◆** Labels:
 - ▲ Distance to sink

Algorithm Hu's schedule with ā resources

- Label operations with distance to sink
- ◆ Set step / = 1
- Repeat until all ops are scheduled:
 - ▲ Select $s \le \bar{a}$ resources with
 - **▼ All predecessors scheduled**
 - **▼** Maximal labels
 - ▲ Schedule the s operations at step /
 - ▲ Increment step I = I + 1



Step 2: Op 3,7,8

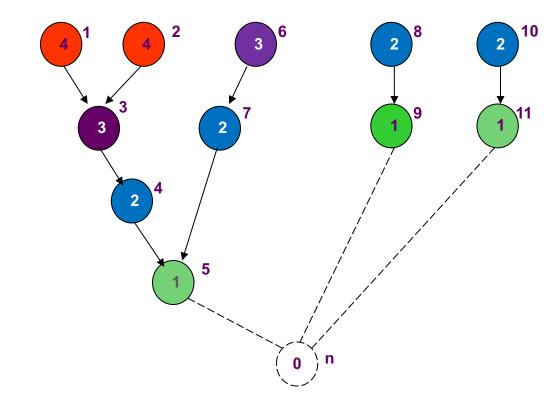
Step 3: Op 4,9,10

Step 4: Op 5,11

Exactness of Hu's algorithm

Definitions:

- \triangle Label of vertex v_i is called α_i
- ▲ Maximal label is called α
- \triangle Number of vertices with label b is called p(b)
- ▲ Latency is called **\lambda**
- \triangle A lower bound on the number of resources to complete a schedule with latency λ is called \bar{a}



 $\alpha = 4$

p(4) = 2

p(3) = 2

p(2) = 4

p(1) = 3

(c) Giovanni De Micheli

37

Exactness of Hu's algorithm

◆ Theorem1:

▲ Given a dag with operations of the same type

$$\bar{\mathbf{a}} = \max_{\mathbf{y}} \Gamma \underbrace{\sum_{j=1}^{Y} p(\alpha + 1 - j)}_{\mathbf{y} + \lambda - \alpha}$$

- \blacktriangle \bar{a} is a lower bound on the number of resources to complete a schedule with latency λ
- ▲ Y is a positive integer
- **♦** Theorem2:
 - Hu's algorithm applied to a tree with ā unit-cycle resources achieves latency
 λ
- Corollary:
 - Arr Since \bar{a} is a lower bound on the number of resources for achieving λ , then λ is minimum

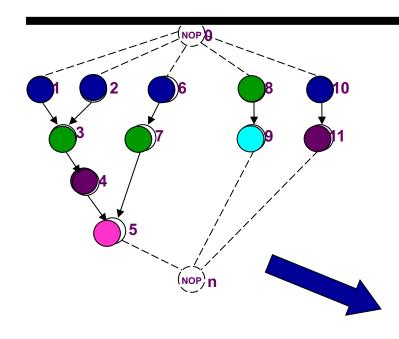
List scheduling algorithms

- Heuristic method for:
 - ▲ Min *latency* subject to *resource bound*
 - ▲ Min resource subject to latency bound
- Greedy strategy (like Hu's)
- General graphs (unlike Hu's)
- Priority list heuristics
 - ▲ Longest path to sink
 - ▲ Longest path to timing constraint

List scheduling algorithm for minimum latency

```
LIST_L( G(V, E), a) {
    I = 1:
    repeat {
             for each resource type k = 1, 2, ..., n_{res} {
                Determine ready operations U_{l,k};
                Determine unfinished operations T_{l,k};
                Select S_k \subseteq U_{l,k} vertices, s.t. |S_k| + |T_{l,k}| \le a_k;
                Schedule the S_k operations at step I;
             I = I + 1;
    until (v_n is scheduled);
    return (t);
```

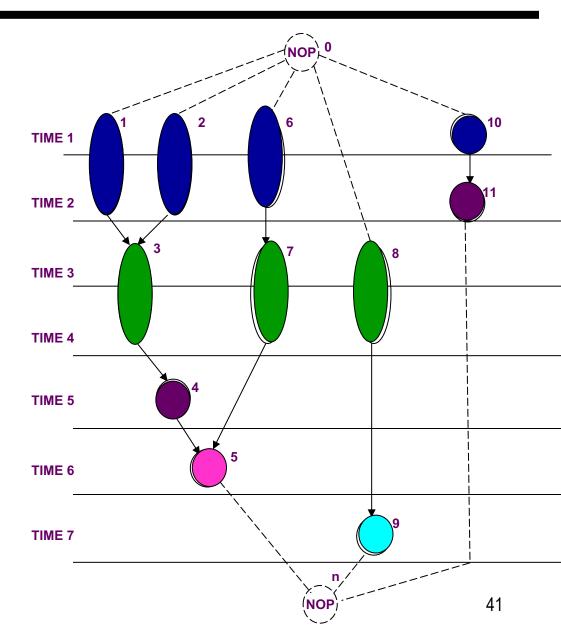
Example



Resource bounds:

3 multipliers with delay 2

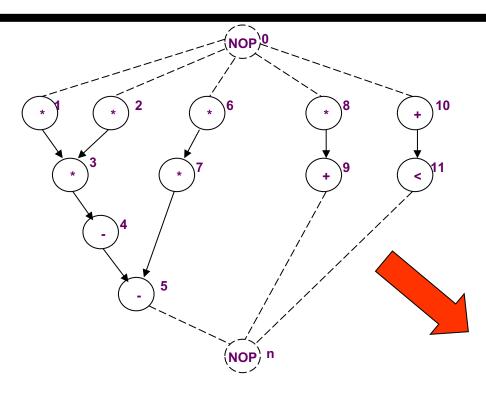
1 ALU with delay 1



List scheduling algorithm for minimum resource usage

```
LIST_R( G(V, E), \overline{\lambda}) {
    a = 1;
    Compute the latest possible start times t^{L} by ALAP (G(V, E), \overline{\lambda});
    if (t_0 < 0)
       return (Ø);
    I = 1;
    repeat {
               for each resource type k = 1, 2, ..., n_{res} {
                  Determine ready operations U_{l,k};
                  Compute the slacks \{s_i = t_i^{\perp} - I \text{ for all } v_i \in U_{lk}\};
                  Schedule the candidate operations with zero slack and update a;
                  Schedule the candidate operations not needing additional resources;
               I = I + 1:
    until (v_n is scheduled);
    return (t, a);
```

Example



Assumptions

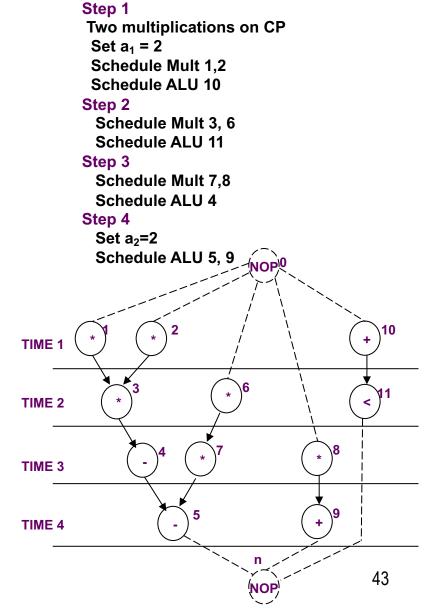
Unit-delay resources

Maximum latency = 4

Start with:

 $a_1 = 1$ multiplier

 $a_2 = 1 \text{ ALUs}$



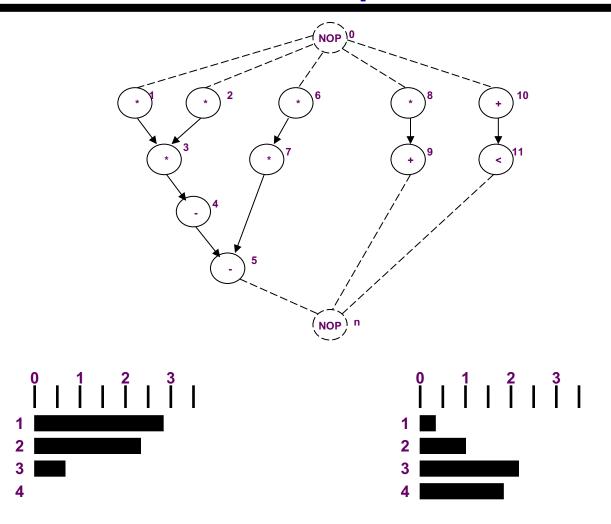
Force-directed scheduling

- Heuristic scheduling methods [Paulin]:
 - ▲ Min *latency* subject to *resource bound*
 - **▼** *Variation* of list scheduling : FDLS
 - ▲ Min resource subject to latency bound
 - **▼** Schedule one operation at a time
- ◆ Rationale:
 - ▲ Reward *uniform distribution* of operations across schedule steps

Force-directed scheduling definitions

- **◆** Operation *interval*:
 - \triangle Mobility plus one (μ_i +1)
 - ▲ Computed by ASAP and ALAP scheduling [t^S, t^L]
- ◆ Operation *probability p_i (I):*
 - ▲ Probability of executing in a given step
 - $1/(\mu_i + 1)$ inside interval; 0 elsewhere
- Operation-type distribution $q_k(I)$:
 - **▲** Sum of the operation probabilities for each type

Example



Distribution graphs for multiplier and ALU

Force

- Used as priority function
- **◆** Force is related to concurrency:
 - **▲** Sort operations for least force
- Mechanical analogy:
 - ▲ Force = constant x displacement
 - **▼** Constant = operation-type distribution
 - **▼** Displacement = change in probability

Forces related to the assignment of an operation to a control step

♦ Self-force:

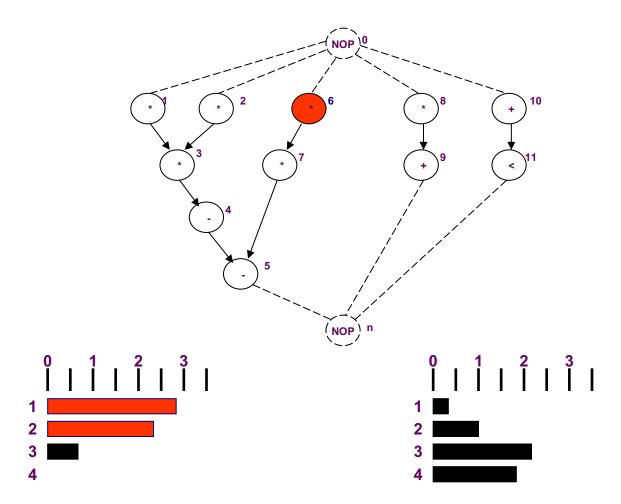
- **▲** Sum of forces to feasible schedule steps
- \triangle Self-force for operation v_i in step I

$$\sum_{m \text{ in interval}} q_k(m) (\delta_{lm} - p_i(m))$$

◆ Predecessor/successor-force:

- ▲ Related to the predecessors/successors
 - **▼** Fixing an operation timeframe restricts timeframe of predecessors/successors
 - **▼** Ex: Delaying an operation implies delaying its successors

Example Schedule operation v_6



Operation v_6 can be scheduled in step 1 or step 2

Example: operation v_6

◆ Op v₆ can be scheduled in the first two steps

$$p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0$$

- ◆ Distribution: q (1) = 2.8; q (2) = 2.3
- ◆ Assign v₆ to step 1:
 - \triangle variation in probability 1 0.5 = 0.5 for step 1
 - ▲ variation in probability 0 0.5 = -0.5 for step 2
- ♦ Self-force: $2.8 \times 0.5 2.3 \times 0.5 = +0.25$
- No successor force

Example: operation v_6

- **◆** Assign *v*₆ to step 2:
 - \triangle variation in probability 0 0.5 = -0.5 for step 1
 - \triangle variation in probability 1 0.5 = 0.5 for step 2
- ♦ Self-force: $-2.8 \times 0.5 + 2.3 \times 0.5 = -0.25$
- **♦** Successor-force:
 - ▲ Operation *v*₇ assigned to step 3
 - \triangle Succ. force is 2.3 (0-0.5) + 0.8 (1 0.5) = -.75
- ◆ Total force = -1

Example: operation v_6

- **◆** Total force in step 1 = + 0.25
- ◆ Total force in step 2 = -1
- **◆** Conclusion:
 - ▲ Least force is for step 2
 - \triangle Assigning v_6 to step 2 reduces concurrency

Force-directed scheduling algorithm for minimum resources

```
FDS ( G ( V, E ), λ ) {
    repeat {
        Compute/update the time-frames;
        Compute the operation and type probabilities;
        Compute the self-forces, p/s-forces and total forces;
        Schedule the op. with least force;
    } until (all operations are scheduled)
    return (t);
}
```

Summary

- Scheduling determines area/latency trade-off
- Intractable problem in general:
 - **▲** Heuristic algorithms
 - ▲ ILP formulation (small-case problems)
- Several heuristic formulations
 - ▲ List scheduling is the fastest and most used
 - ▲ Force-directed scheduling tends to yield good results
- Several extensisons
 - Chaining