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Module 1

¢ Objectives:

A The scheduling problem

v Case analysis

A Scheduling without constraints

A Scheduling with timing constraints
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Scheduling

¢ Circuit model:

A Sequencing graph

A Cycle-time is fixed

A Operation delays expressed in cycles
¢ Scheduling:

A Determine the start times for the operations

A Satisfying all the sequencing (timing and resource) constraint
¢ Goal:

A Determine area/latency trade-off
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Taxonomy

¢ Unconstrained scheduling

¢ Scheduling with timing constraints:
A Latency
A Detailed timing constraints

¢ Scheduling with resource constraints
A Most common problem
A Computationally intractable
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Simplest method

¢ All operations have bounded delays

¢ All delays are in cycles:

ACycle-time is given
¢ No constraints — no bounds on area

¢ Goal:

A Minimize latency
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Minimum-latency unconstrained scheduling problem

¢Given a set of ops V with integer delays D and a partial order
on the operations E:

oFind an integer labeling of the operations ¢ : V —2Z*
such that:

t=@(v),
t,th'l'dj Vi,jS.t.(Vj,Vi)EE

and t. is minimum
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ASAP scheduling algorithm

ASAP ( G4(V,E) ) {
Schedule v, by setting t, = 1;
repeat {
Select a vertex v; whose predecessors are all scheduled;
Schedule v; by setting t;= max t; +d;;

jivivi) e E

}

until (v, is scheduled);

return (t);
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ALAP scheduling algorithm

ALAP ( G4(V,E), A) {
Schedule v, by setting t, = A+ 1;
repeat {
Select a vertex v; whose successors are all scheduled;
Schedule v; by setting t;= min t; -d;

ji(vivi) e E

}

until (vo is scheduled);

return (t);
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Example
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Remarks

¢ ALAP solves a latency-constrained problem

¢ Latency bound can be set to latency computed by ASAP
algorithm

¢ Mobility:
A Defined for each operation
A Difference between ALAP and ASAP schedule

¢ Slack on the start time
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¢ Operations with zero mobility:

Example

A {Vvi, V2 V3V Vs5)
A Critical path

¢ Operations with mobility one:
A {vsv7}

¢ Operations with mobility two:
A {vg vy vio vi1}
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Scheduling under detailed timing constraints

¢ Motivation:
Alnterface design

A Control over operation start time

¢ Constraints:

A Upper/lower bounds on start-time difference of any operation pair

¢ Feasibility of a solution
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Constraint graph model

¢ Start from sequencing graph
A Model delays as weights on edges
¢ Add forward edges for minimum constraints:
A Edge (v;, v;)) withweight [, — t 2+,
¢ Add backward edges for maximum constraints:

A That is, for constraint from v; to v,
add backward edge ( v;, v;) with weight: -u;

v because t <t +u;— t;21t-u;
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Methods for scheduling under detailed timing constraints

¢ Assumption:

A All delays are fixed and known
¢ Set of linear inequalities

¢ Longest path problem

¢ Algorithms:

A Bellman-Ford, Liao-Wong
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Module 2

¢ Objectives:
A Scheduling with resource constraints

A Exact formulation:

v ILP
v Hu’ s algorithm

A Heuristic methods

v List scheduling
v Force-directed scheduling

(c) Giovanni De Micheli
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Scheduling under resource constraints

¢ Classical scheduling problem:
A Fix area bound — minimize latency

¢ The amount of available resources affects the achievable
latency

¢ Dual problem:
A Fix latency bound - minimize resources

¢ Assumption:
A All delays bounded and known
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Minimum latency resource-constrained scheduling problem

¢ Given a set of ops V with integer delays D, a partial order on
the operations E,
and upper bounds { a;; k=1, 2,..., nes } on resource usage:

¢ Find an integer labeling of the operation ¢ :V — z*
such that :
t=@(v;),
t2t+d forallijs.t (v, v) €E,
| {v;|T(v)=kandt /<t +d}|<a, foralltypesk=1,2,...,n
and steps /
and t, is minimum
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Scheduling under resource constraints

¢ Intractable problem

¢ Algorithms:

AExact:

v Integer linear program
v Hu (restrictive assumptions)

A Approximate :

v List scheduling
v Force-directed scheduling

(c) Giovanni De Micheli
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ILP formulation

¢ Binary decision variables:
X={x;, i=1,2,...n; 1=1,2,..., A+1)

x; is TRUE only when operation v; starts in step / of the schedule
(i.e./=t)

Ais an upper bound on latency

¢ Start time of operationv,: 2,/ X,

(c) Giovanni De Micheli
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ILP formulation constraints

¢ Operations start only once
>x,=1 i=1,2,.,n

¢ Sequencing relations must be satisfied
L2t+d 2 ti-t-d; 20 forall(v,v) €E
2lexy—21ex;—d;2 0 forall (v, v) €E

¢ Resource bounds must be satisfied

Simple case (unit delay)

2 x;Sa, k=12...n,; foralll
i:T(v)=k

(c) Giovanni De Micheli
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ILP Formulation

min ||t|| such that

Tlexy=% 1oz 0 0j=1,2, .0 (v v)€E

/
S Y x, <a. k=1,2,..,0.;1=0,1, ..t

iiT(v)=k  m=l-d+1
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Example

¢ Resource constraints:
A 2 ALUs; 2 Multipliers
Aa=2a=2

¢ Latency bound A =4

¢ Single-cycle operation
A d=1 foralll

(c) Giovanni De Micheli



Example
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¢ Resource bounds must be satisfied
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Dual ILP formulation

¢ Minimize resource usage under latency constraint

¢ Additional constraint:

ALatency bound must be satisfied

AZ I x SA+1
¢ Resource usage is unknown in the constraints

¢ Resource usage is the objective to minimize
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¢ Multiplier area=5
¢ ALU area=1.
¢ Objective function: 5a; + a;
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ILP Solution

¢ Use standard ILP packages
¢ Transform into LP problem

¢ Advantages:

A Exact method

A Others constraints can be incorporated

¢ Disadvantages:

AWorks well up to few thousand variables

(c) Giovanni De Micheli

31



Hu’ s algorithm

¢ Assumptions:
A Graph is a forest
AAll operations have unit delay

AAll operations have the same type

¢ Algorithm:
A Greedy strategy

A Exact solution

(c) Giovanni De Micheli

32



Example

1 2 @6 8 10
3 7 9 11
/ //
// //

4 / ’
/ /
/ pd
/ 7
/ /
/ /
/ yid
5 / /7
/ /
/ /
N // ///
¢ Assumptions: S~ /)
TN
A One resource type only !\7 0N
A All operations have unit delay -
¢ Labels:

A Distance to sink

(c) Giovanni De Micheli



Algorithm
Hu’ s schedule with a resources

¢ Label operations with distance to sink
¢ Setstep /=1

¢ Repeat until all ops are scheduled:

A Select s £ aresources with
v All predecessors scheduled
v Maximal labels

A Schedule the s operations at step /
A Increment step /=1+1

(c) Giovanni De Micheli
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Exactness of Hu' s algorithm

¢ Definitions:

ALabel of vertex v; is called o

A Maximal label is called

A Number of vertices with label b is called p(b)
ALatency is called A

AA lower bound on the number of resources to complete a
schedule with latency A is called a

(c) Giovanni De Micheli
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Exactness of Hu' s algorithm

¢ Theorem1:
A Given a dag with operations of the same type
A aA=maxr I p(a+1—j)

y+A-a
A ais alower bound on the number of resources to complete a schedule with
latency A
A Y is a positive integer
¢ Theorema2:
A ;I\u’ s algorithm applied to a tree with a unit-cycle resources achieves latency
¢ Corollary:

A Since a is a lower bound on the number of resources for achieving A,
then A is minimum
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List scheduling algorithms

¢ Heuristic method for:
A Min latency subject to resource bound

A Min resource subject to latency bound

¢ Greedy strategy (like Hu' s)
# General graphs (unlike Hu’ s)

¢ Priority list heuristics

A Longest path to sink

A Longest path to timing constraint

(c) Giovanni De Micheli
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List scheduling algorithm for minimum latency

LIST L(G(V, E), a) {

I=1;
repeat {
for each resource type k =1, 2, ..., Ny {
Determine ready operations U,
Determine unfinished operations T;
Select Sy < U vertices, s.t. [Sy| + T4 < ay
Schedule the S, operations at step /;
}
I=1+1;
}

until (v, is scheduled) ;

return (t);

(c) Giovanni De Micheli
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List scheduling algorithm for minimum resource usage

LIST_R( G(V, E), ) {

a=1,
Compute the latest possible start times t- by ALAP ( G(V, E), A);
if (t, < 0)
return (G);
I=1;
repeat {
for each resource type k=1, 2, ..., n, {
Determine ready operations U, ,;
Compute the slacks {s;= t,-L—I forall v, e Uy};
Schedule the candidate operations with zero slack and update a;
Schedule the candidate operations not needing additional resources;
}
I=1+1;
}

until (v, is scheduled) ;
return (t, a);

(c) Giovanni De Micheli
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Example
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Force-directed scheduling

¢ Heuristic scheduling methods [Paulin]:

A Min Jatency subject to resource bound
v Variation of list scheduling : FDLS

A Min resource subject to latency bound
v Schedule one operation at a time

¢ Rationale:

A Reward uniform distribution of operations across schedule steps
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Force-directed scheduling definitions

¢ Operation interval:

A Mobility plus one (x; +1)
A Computed by ASAP and ALAP scheduling [ t5, t*]

¢ Operation probability p; (I):
A Probability of executing in a given step

1/ ( p; + 1) inside interval; 0 elsewhere

¢ Operation-type distribution qy ():

A Sum of the operation probabilities for each type

(c) Giovanni De Micheli
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Force

¢ Used as priority function

¢ Force is related to concurrency:

A Sort operations for least force

¢ Mechanical analogy:

AForce = constant x displacement

v Constant = operation-type distribution
v Displacement = change in probability

(c) Giovanni De Micheli
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Forces related to the assignment of an operation to a control step

¢ Self-force:

A Sum of forces to feasible schedule steps
A Self-force for operation v;in step /

Z m in interval qk(m) (5Im - pi(m))

¢ Predecessor/successor-force:

A Related to the predecessors/successors

v Fixing an operation timeframe restricts timeframe of
predecessors/successors

v Ex: Delaying an operation implies delaying its successors
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Example
Schedule operation v
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Operation v can be scheduled in step 1 or step 2
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Example: operation v

¢ Op v, can be scheduled in the first two steps
p(1)=05p(2)=05p(3)=0;p(4)=0

¢ Distribution: q(1)=2.8;q(2)=23

¢ Assign vg to step 1:

A variation in probability 1 - 0.5 = 0.5 for step 1
A variation in probability 0 - 0.5 = -0.5 for step 2

¢ Self-force: 2.8:0.5-2.3-0.5=+0.25
¢ No successor force

(c) Giovanni De Micheli
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Example: operation v

¢ Assign v; to step 2:
A variation in probability 0 - 0.5 = -0.5 for step 1
A variation in probability 1 - 0.5 = 0.5 for step 2

¢ Self-force: -2.8-0.5+2.3-0.5=-0.25

¢ Successor-force:

A Operation v; assigned to step 3
A Succ. forceis 2.3(0-05)+08(1-0.5)=-.75

¢ Total force = -1

(c) Giovanni De Micheli
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Example: operation v;

¢ Total force in step 1 =+ 0.25
¢ Total force in step 2 = -1

¢ Conclusion:

A Least force is for step 2

A Assigning v; to step 2 reduces concurrency

(c) Giovanni De Micheli
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Force-directed scheduling algorithm for minimum resources

FDS (G (V,E), A){
repeat {
Compute/update the time-frames;
Compute the operation and type probabilities;

Compute the self-forces, p/s-forces and total forces;
Schedule the op. with least force;

} until (all operations are scheduled)
return (t);
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Summary

¢ Scheduling determines area/latency trade-off

¢ Intractable problem in general:

A Heuristic algorithms
A ILP formulation (small-case problems)

¢ Several heuristic formulations

A List scheduling is the fastest and most used
A Force-directed scheduling tends to yield good results

¢ Several extensisons

A Chaining

(c) Giovanni De Micheli
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